3.188 \(\int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=181 \[ \frac {2 a^3 (10 A+11 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a^3 (230 A+301 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[Out]

2/7*a*A*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(7/2)+2/15*a^3*(10*A+11*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2
)/(a+a*cos(d*x+c))^(1/2)+2/105*a^3*(230*A+301*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/35*a^2
*(10*A+7*B)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {2975, 2980, 2771} \[ \frac {2 a^3 (10 A+11 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 (230 A+301 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

(2*a^3*(10*A + 11*B)*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*a^3*(230*A + 301*B)
*Sin[c + d*x])/(105*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]) + (2*a^2*(10*A + 7*B)*Sqrt[a + a*Cos[c + d*
x]]*Sin[c + d*x])/(35*d*Cos[c + d*x]^(5/2)) + (2*a*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(7*d*Cos[c + d*x
]^(7/2))

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx &=\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {(a+a \cos (c+d x))^{3/2} \left (\frac {1}{2} a (10 A+7 B)+\frac {1}{2} a (2 A+7 B) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (10 A+7 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4}{35} \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {7}{4} a^2 (10 A+11 B)+\frac {1}{4} a^2 (30 A+49 B) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a^3 (10 A+11 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (10 A+7 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{105} \left (a^2 (230 A+301 B)\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^3 (10 A+11 B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (230 A+301 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (10 A+7 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.63, size = 104, normalized size = 0.57 \[ \frac {a^2 \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} ((930 A+987 B) \cos (c+d x)+2 (115 A+98 B) \cos (2 (c+d x))+230 A \cos (3 (c+d x))+290 A+301 B \cos (3 (c+d x))+196 B)}{210 d \cos ^{\frac {7}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(290*A + 196*B + (930*A + 987*B)*Cos[c + d*x] + 2*(115*A + 98*B)*Cos[2*(c + d*
x)] + 230*A*Cos[3*(c + d*x)] + 301*B*Cos[3*(c + d*x)])*Tan[(c + d*x)/2])/(210*d*Cos[c + d*x]^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.99, size = 114, normalized size = 0.63 \[ \frac {2 \, {\left ({\left (230 \, A + 301 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (115 \, A + 98 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (20 \, A + 7 \, B\right )} a^{2} \cos \left (d x + c\right ) + 15 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

2/105*((230*A + 301*B)*a^2*cos(d*x + c)^3 + (115*A + 98*B)*a^2*cos(d*x + c)^2 + 3*(20*A + 7*B)*a^2*cos(d*x + c
) + 15*A*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^5 + d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.23, size = 111, normalized size = 0.61 \[ -\frac {2 a^{2} \left (-1+\cos \left (d x +c \right )\right ) \left (230 A \left (\cos ^{3}\left (d x +c \right )\right )+301 B \left (\cos ^{3}\left (d x +c \right )\right )+115 A \left (\cos ^{2}\left (d x +c \right )\right )+98 B \left (\cos ^{2}\left (d x +c \right )\right )+60 A \cos \left (d x +c \right )+21 B \cos \left (d x +c \right )+15 A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{105 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{\frac {7}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x)

[Out]

-2/105/d*a^2*(-1+cos(d*x+c))*(230*A*cos(d*x+c)^3+301*B*cos(d*x+c)^3+115*A*cos(d*x+c)^2+98*B*cos(d*x+c)^2+60*A*
cos(d*x+c)+21*B*cos(d*x+c)+15*A)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)/cos(d*x+c)^(7/2)

________________________________________________________________________________________

maxima [B]  time = 1.31, size = 396, normalized size = 2.19 \[ \frac {8 \, {\left (\frac {7 \, {\left (\frac {15 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {28 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} B}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}}} + \frac {5 \, {\left (\frac {21 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {56 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {36 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} A {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}}\right )}}{105 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

8/105*(7*(15*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c)
 + 1)^3 + 28*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 8*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x +
 c) + 1)^7)*B/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)) + 5*(
21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 +
63*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^
7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*A*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin
(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/(cos(d*
x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/d

________________________________________________________________________________________

mupad [B]  time = 6.86, size = 551, normalized size = 3.04 \[ \frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (\frac {a^2\,\left (230\,A+301\,B\right )\,2{}\mathrm {i}}{105\,d}-\frac {a^2\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\left (10\,A+17\,B\right )\,2{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\left (10\,A+17\,B\right )\,2{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\left (100\,A+113\,B\right )\,2{}\mathrm {i}}{15\,d}-\frac {a^2\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\left (100\,A+113\,B\right )\,2{}\mathrm {i}}{15\,d}-\frac {a^2\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\left (230\,A+301\,B\right )\,2{}\mathrm {i}}{105\,d}-\frac {B\,a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,2{}\mathrm {i}}{d}+\frac {B\,a^2\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,2{}\mathrm {i}}{d}\right )}{\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+3\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(9/2),x)

[Out]

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*(230*A + 301*B)*2i)/(105*d) - (a^2*exp(c*
3i + d*x*3i)*(10*A + 17*B)*2i)/(3*d) + (a^2*exp(c*4i + d*x*4i)*(10*A + 17*B)*2i)/(3*d) + (a^2*exp(c*2i + d*x*2
i)*(100*A + 113*B)*2i)/(15*d) - (a^2*exp(c*5i + d*x*5i)*(100*A + 113*B)*2i)/(15*d) - (a^2*exp(c*7i + d*x*7i)*(
230*A + 301*B)*2i)/(105*d) - (B*a^2*exp(c*1i + d*x*1i)*2i)/d + (B*a^2*exp(c*6i + d*x*6i)*2i)/d))/((exp(- c*1i
- d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*1i + d*x*1i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)
^(1/2) + 3*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 3*exp(c*3i + d*x*3i)*(ex
p(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 3*exp(c*4i + d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i +
 d*x*1i)/2)^(1/2) + 3*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*6i + d*
x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp
(c*1i + d*x*1i)/2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________